Pacific Possessions: The Challenges of Drought on the Islands

Laura Kati Corlew, Ph.D.
Pacific RISA
East-West Center
CorlewK@EastWestCenter.org

LT Charlene Felkley
Pacific ENSO Applications
Climate Center

Richard Heim
National Climate Data Center
Pacific RISA
Regional Integrated Sciences and Assessments
Pacific Islands Regional Climate Assessment (PIRCA)

The MISSION of the Pacific ENSO Applications Climate Center is to conduct research and develop information products specific to the USAPI on the ENSO climate cycle, its historical impacts, and latest long-term forecasts of ENSO conditions, in support of planning and management activities in such climate-sensitive sectors as water resource management, fisheries, agriculture, civil defense, public utilities, coastal zone management, and other economic and environmental sectors of importance to the communities of the USAPI.
PEAC’s Main Collaborators

The National Oceanic and Atmospheric Administration (NOAA), the National Weather Service (NWS) Pacific Region, the University of Hawaiʻi – JIMAR, and the University of Guam – Water and Environmental Research Instituted (UOG/WERI).

Additional Partnerships: NOAA Climate Program Offices (NOAA/CPO), the NOAA Climate Prediction Center (NOAA/CPC), and the International Research Institute for Climate and Society at Columbia University (IRI)
The Pacific Region
PEAC Center affects the livelihoods of more than two million people, speaking fourteen different languages, spread out over ten million square miles in Hawaiʻi and the US Affiliate Pacific Islands (USAPI).
PEAC’s Monthly Conference Calls

• PEAC-sponsored call in an hour-long workshop format
• WSO from each of the island communities is invited to attend to discuss:
 – PEAC forecasts (sea-level, rainfall, tropical cyclone, etc.)
 – Issues related to past, present, and future climatic conditions

CONSENSUS FORECAST:
 – Based on observations provided by the WSO representatives
 – Rainfall, sea-level, and tropical cyclone forecasts for each zone
 – Forecasts expressed as probabilities of occurrence
Quarterly Newsletter

Sea-level, rainfall summaries and forecasts for American Samoa, CNMI, FSM, Guam, Hawai‘i, Palau, and RMI

Special section in each issue discusses tropical cyclone outlook, SOI, SST and sea-level forecasts

Published every 3 months (with special bulletins issued as needed)

About 500 hardcopies are mailed worldwide

Electronic versions of the newsletter are available at http://www.prh.noaa.gov/peac/
Climate Impacts and Outlooks

Hawaii and U.S. Pacific Islands Region

1st Quarter 2013

Significant Events and Impacts for 4th Quarter 2012

Hawaii and Northwestern Hawaiian Islands — Drought persisted through the rainy season, with extreme drought on windward areas of Maui, Lanai, Molokai, and the Big Island. Guam/ Commonwealth of the Northern Mariana Islands (CMNI) — Large 20’ waves hit the island this December, along with numerous fast-moving, tradewind showers. Republic of the Marshall Islands (RMI) — Lower than normal rainfall has reduced reservoirs on Majuro, while Kwajalein was wetter than normal. Federated States of Micronesia (FSM) — Strong trade winds downed banana trees in December, but no inundation was reported. Republic of Palau — Super Typhoon Saipalhi impacted Palau with high winds, storm surge, and heavy rain, significantly damaging or destroying over 250 houses and displacing over 350 people. American Samoa — Cyclone Evan struck the island in December with minimal damage. Rainfall was above normal. In neighboring islands nation damage from Evan was significant.

Regional Climate Outlook for 4th Quarter 2012

Regional Climate Overview for 4th Quarter 2012

El Niño conditions continued in the Equatorial Pacific Region. The monsoon trough was relatively weak during the period, with low latitudes of the western North Pacific were dominated by anomalous westerly winds. In contrast, the Australian Northwest Monsoon was quite active, with some winds breaking containment of the South Pacific Convergence Zone (SPCZ) which resulted in the development of many tropical cyclones near American Samoa.

Sea surface temperature (SST) anomalies trended down across much of the Pacific Ocean. This relative cooling was consistent with a strengthening of the trade winds across the west-central Pacific. This resulted in a relative maximum in near-surface heights over the western Pacific, and above normal heights across the far western Pacific. Sea level pressure was 3-6 inches higher than normal.

Rainfall throughout the region was close to normal. In Hawaii, rainfall was below normal in many areas of the state. In Guam and the CNMI, rainfall was near-normal. In the RMI, rainfall was below-normal. In the FSM, rainfall was above-normal in Chuuk, below-normal in Kosrae, near-normal in Pohnpei, and near-normal in Yap. In Palau, rainfall was near-normal. In American Samoa, rainfall was above normal. Drought conditions continued and worsened a bit over the Hawaiian Archipelago. By late January, over 72% of the state of Hawaii was abnormally dry or in drought. Drought in Maui worsened during the quarter. Improvement over the lowest areas is expected toward the end of the rainy season.

Tropical Cyclone activity for November-January in the western North Pacific and southwest Pacific was near-normal. The activity in the western North Pacific was displaced to the west and north of average, giving Micronesia another well below normal typhoon season.
Defining Drought in the Pacific Region

• There are a number of island-specific impacts that could potentially be used as indices of drought associated with the ENSO cycle.
 • E.g., food and water security
• Despite a clear understanding of ENSO impacts on the islands, especially in relation to drought impacts, there remain only a few drought indices available in the Pacific.
High Islands vs. Low Islands

- The higher islands typically have stream flow, aquifers, and catchments to meet water needs.
- Rainclouds gather at mountain peaks.
- Watersheds run from the upland ecosystems down to coastal areas.
- During droughts, the uplands suffer from lack of moisture from the cloud cover and stream flow diminishes. Water stores in the aquifers and catchment tanks dwindle.
High Islands vs. Low Islands

• On the lower islands, there is no stream flow, and aquifers – if they exist – are small and brackish.
• Catchments become the sole source of water supply.
• There are only two reservoirs in the USAPI used for drinking water, located in Guam and Palau.
Challenges of drought monitoring in the Pacific

Drought is defined differently in the USAPI than the mainland

- Atolls lacking streams
- Very little agriculture
Challenges of drought monitoring in the Pacific

• Need for clearly defined objective as well as subjective indicators specific to each group of islands.

• Without quantifiable data, the USDM in the Pacific Islands will not be significant.

 – Note: we do have SPI established for most of the islands in our network.
Challenges of drought monitoring in the Pacific

Weather extremes are more frequent, more destructive, and more relevant in the changing climate.
Challenges of drought monitoring in the Pacific

In Kosrae, 1997 was the wettest year on record, while the following year in 1998 was the driest.
Challenges of drought monitoring in the Pacific

Need to obtain a better understanding of the impacts and atmospheric drivers of drought in the Pacific Islands.
Challenges of drought monitoring in the Pacific

• Although a meteorological drought is over when rains finally arrive, an island community’s food sources can take 8-10 months more to recover.
• Additionally, heavy rains due to a tropical storm system may dump a large amount of rain at one time, but may not necessarily end a drought.
Challenges of drought monitoring in the Pacific

Real time data is limited in many of the USAPI.

- Insufficient data monitoring stations
- Logistical issues in very remote areas—travel and technology
- Turnover and replacement of employees with long training periods affects information distribution
- Language and cultural diversity in communication
Experimental drought monitoring in the Pacific

Procedure:
1. Is monthly rainfall this month and last couple months > or = minimum sufficient rainfall amount? If <, then go to 2.
2. examine SPI & percent normal precip for current & multi-months (in light of seasonality of precip); if anomalies wet, no drought; if dry, then go to 3 & 4.
3. examine other special island-based rules
4. check for impacts reports

Drought Categories:
- **D6: Abnormally Dry**
 - SPI: -0.5 to -0.9
 - NWS: Drought

- **D1: Drought - Moderate**
 - SPI: -1.0 to -1.2
 - SPS may be issued

- **D2: Drought - Severe**
 - SPI: -1.3 to -1.5
 - DGT issued

- **D3: Drought - Extreme**
 - SPI: -1.6 to -1.9
 - DGT in effect

- **D4: Drought - Exceptional**
 - SPI: -2.0 or less
 - DGT in effect

Short-term Impacts:
- Typically < 4 months (e.g., 3 consecutive months with < 2" rain) (e.g., agriculture, grasslands)

Long-term Impacts:
- Typically > 4 months (e.g., hydrology, ecology)
- But hydrological impacts can occur < 4 months, e.g., no catchment, no groundwater recharge, & lowering of sea levels due to El Nino

SAMPLE / EXPERIMENTAL

<table>
<thead>
<tr>
<th>Island</th>
<th>Conditions at the end of the month: March 31, 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Reasoning:</td>
</tr>
<tr>
<td>Koror</td>
<td>Drought Status:</td>
</tr>
<tr>
<td>Yap</td>
<td>D6--D6</td>
</tr>
<tr>
<td>Guam</td>
<td>D1-S</td>
</tr>
<tr>
<td>Saipan</td>
<td>D1-S</td>
</tr>
<tr>
<td>Truk</td>
<td>D-Nothing</td>
</tr>
<tr>
<td>Low</td>
<td>D-Nothing</td>
</tr>
<tr>
<td>Pohnpei</td>
<td>D-Nothing</td>
</tr>
<tr>
<td>Kosrae</td>
<td>D-Nothing</td>
</tr>
<tr>
<td>Kwajalein</td>
<td>D2-S</td>
</tr>
<tr>
<td>Majuro</td>
<td>D6</td>
</tr>
<tr>
<td>Pago Pago</td>
<td>D-Nothing</td>
</tr>
</tbody>
</table>

U.S. Drought Monitor

- **Drought Status:**
 - D1: Abnormally Dry
 - D1: Drought - Moderate
 - D2: Drought - Severe
 - D3: Drought - Extreme
 - D4: Drought - Exceptional

- **Drought Impact:**
 - **DGT:** Drought-Grazing Termination
 - **DGT+:** Drought-Grazing Termination + Drought-Grazing Termination

- **Local Conditions:**
 - El Nino
 - Southern Oscillation

- **Released Thursday, April 4, 2013**
- **Author:** Rich Tinkler, NDAAMS/NERCPCP

- **http://droughtmonitor.unl.edu/**
Standardized Precipitation Index
Micronesia and Samoa data

SELECTED PACIFIC ISLANDS STANDARDIZED PRECIPITATION INDEX (SPI) SUMMARY
NATIONAL WEATHER SERVICE HONOLULU HI
DATA THROUGH THE END OF MAR 2013

SPI VALUES BASED ON PROVISIONAL COOPERATIVE OBSERVER AND TELEMETED RAINFALL DATA FROM SELECTED PACIFIC ISLANDS.

NOTE: THIS SUMMARY WAS DEVELOPED AND PRODUCED IN SUPPORT OF RAINFALL MONITORING REQUIREMENTS. THE SPI PROVIDES A NORMALIZED VIEW OF MONTHLY RAINFALL. FOR MORE INFORMATION ON THE SPI AND THE PRODUCTION OF THIS SUMMARY, PLEASE SEE THE SPI INFORMATION PAGE.

SPI CATEGORIES ARE AS FOLLOWS:
- 2.00 AND GREATER: EXTREMELY WET
- 1.50 TO 1.99: VERY WET
- 1.00 TO 1.49: MODERATELY WET
- 0.99 TO -0.99: NEAR NORMAL
- -1.00 TO -1.49: MODERATELY DRY
- -1.50 TO -1.99: VERY DRY
- -2.00 AND LESS: EXTREMELY DRY
- -99.00: MISSING DATA

On other Pacific Islands (maps — Micronesia, Marshall Islands, basinwide), March was drier than normal at Majuro and Pago Pago, and much drier than normal at Koror, Pohnpei, Kosrae, and Kwajalein. March rainfall amounts were below 4 inches at Kwajalein, Saipan, and Guam and below 8 inches at Koror, Yap, and Majuro. (This is the dry season for several of these stations, so even low rainfall amounts may show up as high percent of normals [for example, Saipan, Guam, Yap].) Majuro has been below normal for 9 of the last 12 months, Kwajalein and Pohnpei for 8 of the last 12 months. Twelve-month rainfall totals (April 2012-March 2013) for Koror, Kwajalein, Majuro, and Pohnpei are below normal.

According to NWS reports, parts of the northern Marshall Islands have become critically dry and parts of Yap state have become very dry during March and into early April. Serious drought conditions are occurring for atolls of the Marshall Islands north of Majuro, including Ebeye, Eniwetok, Wotje, Ujao, Malekula, Wotho, Utirik and other islands and atolls north of 8 degrees north. Conditions have improved somewhat across Chuuk state and from Majuro southward, and drought conditions are no longer expected there.

Impacts: On Majuro, dry-season type rain showers have recently helped water conditions, increasing the Majuro reservoir to a little over half full with 18 468 million gallons by early April. Despite the increased rainfall, water conservation measures are still recommended for the next month or so as week-long periods of dry weather are still possible. For atolls north of Majuro, stringent conservation measures are needed to avoid the depletion of wells and catchments. The mayor of Wotje indicates that the well-water on Wotje has become too salty to drink and that catchments are nearly empty. Water augmentation measures are urgently needed there.

Pacific Island Percent of 1981-2010 Normal Median Precipitation

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuuk</td>
<td>40%</td>
<td>173%</td>
<td>131%</td>
<td>141%</td>
<td>165%</td>
<td>85%</td>
<td>128%</td>
<td>144%</td>
<td>116%</td>
<td>93%</td>
<td>146%</td>
<td>192%</td>
<td>128%</td>
</tr>
<tr>
<td>Guam NAS</td>
<td>121%</td>
<td>224%</td>
<td>107%</td>
<td>65%</td>
<td>179%</td>
<td>125%</td>
<td>92%</td>
<td>74%</td>
<td>55%</td>
<td>128%</td>
<td>97%</td>
<td>191%</td>
<td>118%</td>
</tr>
<tr>
<td>Kapingamarang</td>
<td>102%</td>
<td>143%</td>
<td>179%</td>
<td>145%</td>
<td>192%</td>
<td>147%</td>
<td>138%</td>
<td>157%</td>
<td>74%</td>
<td>197%</td>
<td>154%</td>
<td>199%</td>
<td>152%</td>
</tr>
<tr>
<td>Koror</td>
<td>120%</td>
<td>122%</td>
<td>55%</td>
<td>86%</td>
<td>102%</td>
<td>111%</td>
<td>78%</td>
<td>13%</td>
<td>72%</td>
<td>92%</td>
<td>56%</td>
<td>93%</td>
<td></td>
</tr>
<tr>
<td>Kosrae</td>
<td>84%</td>
<td>86%</td>
<td>99%</td>
<td>124%</td>
<td>144%</td>
<td>100%</td>
<td>113%</td>
<td>119%</td>
<td>130%</td>
<td>95%</td>
<td>146%</td>
<td>164%</td>
<td>106%</td>
</tr>
<tr>
<td>Kwajalein</td>
<td>68%</td>
<td>151%</td>
<td>117%</td>
<td>120%</td>
<td>95%</td>
<td>57%</td>
<td>73%</td>
<td>45%</td>
<td>230%</td>
<td>35%</td>
<td>17%</td>
<td>74%</td>
<td>94%</td>
</tr>
<tr>
<td>Lukonor</td>
<td>76%</td>
<td>106%</td>
<td>126%</td>
<td>82%</td>
<td>73%</td>
<td>148%</td>
<td>74%</td>
<td>178%</td>
<td>52%</td>
<td>60%</td>
<td>134%</td>
<td>122%</td>
<td>101%</td>
</tr>
<tr>
<td>Majuro</td>
<td>97%</td>
<td>59%</td>
<td>81%</td>
<td>68%</td>
<td>87%</td>
<td>67%</td>
<td>46%</td>
<td>54%</td>
<td>53%</td>
<td>31%</td>
<td>152%</td>
<td>78%</td>
<td>81%</td>
</tr>
<tr>
<td>Pago Pago</td>
<td>90%</td>
<td>126%</td>
<td>115%</td>
<td>105%</td>
<td>55%</td>
<td>195%</td>
<td>54%</td>
<td>181%</td>
<td>143%</td>
<td>137%</td>
<td>87%</td>
<td>93%</td>
<td>117%</td>
</tr>
<tr>
<td>Pohnpei</td>
<td>45%</td>
<td>115%</td>
<td>100%</td>
<td>92%</td>
<td>95%</td>
<td>90%</td>
<td>82%</td>
<td>109%</td>
<td>71%</td>
<td>83%</td>
<td>54%</td>
<td>67%</td>
<td>85%</td>
</tr>
<tr>
<td>Saipan</td>
<td>33%</td>
<td>166%</td>
<td>118%</td>
<td>77%</td>
<td>135%</td>
<td>101%</td>
<td>172%</td>
<td>31%</td>
<td>89%</td>
<td>191%</td>
<td>78%</td>
<td>127%</td>
<td>113%</td>
</tr>
<tr>
<td>Yap</td>
<td>89%</td>
<td>142%</td>
<td>59%</td>
<td>84%</td>
<td>128%</td>
<td>187%</td>
<td>140%</td>
<td>121%</td>
<td>102%</td>
<td>90%</td>
<td>113%</td>
<td>130%</td>
<td>121%</td>
</tr>
</tbody>
</table>
Pacific Island Precipitation (Inches)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuuk</td>
<td>5.02</td>
<td>19.56</td>
<td>15.27</td>
<td>16.92</td>
<td>21.78</td>
<td>10.04</td>
<td>14.68</td>
<td>13.50</td>
<td>10.00</td>
<td>10.60</td>
<td>16.00</td>
<td>168.26</td>
<td></td>
</tr>
<tr>
<td>Guam NAS</td>
<td>3.05</td>
<td>7.63</td>
<td>6.63</td>
<td>6.74</td>
<td>26.42</td>
<td>15.98</td>
<td>10.56</td>
<td>5.45</td>
<td>2.81</td>
<td>5.12</td>
<td>2.95</td>
<td>3.95</td>
<td>97.29</td>
</tr>
<tr>
<td>Kapingamarangi</td>
<td>13.91</td>
<td>17.24</td>
<td>24.68</td>
<td>20.65</td>
<td>15.57</td>
<td>14.56</td>
<td>11.32</td>
<td>15.44</td>
<td>7.25</td>
<td>18.02</td>
<td>14.25</td>
<td>22.79</td>
<td>195.68</td>
</tr>
<tr>
<td>Kosrae</td>
<td>14.70</td>
<td>15.35</td>
<td>14.56</td>
<td>18.55</td>
<td>20.46</td>
<td>15.52</td>
<td>12.33</td>
<td>16.49</td>
<td>17.75</td>
<td>16.27</td>
<td>18.89</td>
<td>10.20</td>
<td>191.07</td>
</tr>
<tr>
<td>Kwajalein</td>
<td>3.58</td>
<td>10.82</td>
<td>8.08</td>
<td>11.83</td>
<td>9.23</td>
<td>6.17</td>
<td>8.18</td>
<td>5.09</td>
<td>15.33</td>
<td>1.22</td>
<td>0.46</td>
<td>1.73</td>
<td>81.72</td>
</tr>
<tr>
<td>Lukonor</td>
<td>8.60</td>
<td>12.35</td>
<td>14.53</td>
<td>13.08</td>
<td>10.26</td>
<td>15.02</td>
<td>8.39</td>
<td>16.18</td>
<td>7.00</td>
<td>5.05</td>
<td>11.93</td>
<td>11.34</td>
<td>133.73</td>
</tr>
<tr>
<td>Majuro</td>
<td>9.14</td>
<td>5.96</td>
<td>8.89</td>
<td>7.54</td>
<td>10.15</td>
<td>7.47</td>
<td>5.84</td>
<td>20.69</td>
<td>6.09</td>
<td>2.42</td>
<td>10.44</td>
<td>5.13</td>
<td>99.76</td>
</tr>
<tr>
<td>Pago Pago</td>
<td>8.41</td>
<td>12.15</td>
<td>6.13</td>
<td>5.84</td>
<td>3.19</td>
<td>12.73</td>
<td>4.99</td>
<td>18.34</td>
<td>18.31</td>
<td>18.27</td>
<td>10.48</td>
<td>9.97</td>
<td>128.81</td>
</tr>
<tr>
<td>Saipan</td>
<td>0.88</td>
<td>3.96</td>
<td>4.26</td>
<td>6.86</td>
<td>17.73</td>
<td>10.24</td>
<td>18.31</td>
<td>1.75</td>
<td>3.44</td>
<td>4.83</td>
<td>2.03</td>
<td>2.40</td>
<td>76.69</td>
</tr>
<tr>
<td>Yap</td>
<td>5.00</td>
<td>11.14</td>
<td>11.95</td>
<td>12.74</td>
<td>18.92</td>
<td>25.19</td>
<td>17.08</td>
<td>10.67</td>
<td>8.68</td>
<td>5.72</td>
<td>5.86</td>
<td>5.95</td>
<td>138.9</td>
</tr>
</tbody>
</table>

Pacific Island 1981-2010 Normal Median Precipitation (Inches)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuuk</td>
<td>12.47</td>
<td>11.30</td>
<td>11.66</td>
<td>11.98</td>
<td>12.86</td>
<td>11.71</td>
<td>11.51</td>
<td>10.61</td>
<td>11.25</td>
<td>10.10</td>
<td>7.25</td>
<td>8.32</td>
<td>131.02</td>
</tr>
<tr>
<td>Guam NAS</td>
<td>2.53</td>
<td>3.40</td>
<td>6.18</td>
<td>10.14</td>
<td>14.74</td>
<td>12.66</td>
<td>11.44</td>
<td>7.38</td>
<td>5.11</td>
<td>4.01</td>
<td>3.03</td>
<td>2.07</td>
<td>82.69</td>
</tr>
<tr>
<td>Koror</td>
<td>7.32</td>
<td>11.83</td>
<td>17.48</td>
<td>18.53</td>
<td>13.50</td>
<td>11.77</td>
<td>11.84</td>
<td>11.39</td>
<td>11.16</td>
<td>10.18</td>
<td>8.56</td>
<td>7.44</td>
<td>141</td>
</tr>
<tr>
<td>Kwajalein</td>
<td>5.26</td>
<td>6.72</td>
<td>6.93</td>
<td>9.87</td>
<td>9.74</td>
<td>10.74</td>
<td>11.18</td>
<td>12.28</td>
<td>6.66</td>
<td>3.16</td>
<td>2.64</td>
<td>2.35</td>
<td>86.53</td>
</tr>
<tr>
<td>Saipan</td>
<td>2.63</td>
<td>2.38</td>
<td>3.62</td>
<td>8.91</td>
<td>13.13</td>
<td>10.09</td>
<td>10.62</td>
<td>5.61</td>
<td>3.85</td>
<td>2.53</td>
<td>2.59</td>
<td>1.89</td>
<td>67.85</td>
</tr>
<tr>
<td>Yap</td>
<td>5.63</td>
<td>7.85</td>
<td>12.04</td>
<td>15.08</td>
<td>14.82</td>
<td>13.50</td>
<td>12.18</td>
<td>8.83</td>
<td>8.51</td>
<td>6.39</td>
<td>5.19</td>
<td>4.56</td>
<td>114.58</td>
</tr>
</tbody>
</table>
Future of drought monitoring in the Pacific

Clearly define objective and subjective indicators and impacts for each island community.
Include number of days since last X” rainfall for each island community.
Future of drought monitoring in the Pacific

Transition monthly climate information sharing can transition to weekly information sharing to work with the USDM established drought monitoring system. Automate daily precipitation.
Thank You!
Mahalo Nui Loa!
Fa’afetai Lava!
Kommol Tata!
Kinisou!
Kalahngan!
Kulo!
Kammagar!
Si Yu’us Ma’ase!
Ke Kmal Mesaul!

Kati Corleww, Pacific RISA
CorlewwK@EastWestCenter.org

Charlene Felkley, PEAC
PEAC@noaa.gov

Richard Heim, NCDC
Richard.Heim@noaa.gov